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Abstract: An odorant stimulus given to a bee elicits a characteristic combinatorial
pattern of activity in neuronal units called glomeruli. These patterns can be measured
by optical imaging, however detecting and identifying the glomeruli is a laborious
task and prone to errors. Here, we present an image analysis pipeline for the automatic
detection and identification of glomeruli. It involves Independent Component Analysis
(ICA) to detect glomeruli in CCD camera data, a filtering step to exclude non-
glomerulus objects and a graph-matching approach to find the best projection of the
observed brain region onto a reference atlas. We evaluate our method against a manual
glomerulus identification performed by a human expert and show that we achieve
reliable results. Employing our method, we are now able to screen multiple recordings
with the same accuracy, yielding a homogeneous collection of glomerulus identity
mappings. These will subsequently be used to extract activity patterns that can be
compared between individuals.

1 Introduction

The olfactory sense of insects is a popular model for studies on signal perception,
learning and memory formation. It is not only of biological interest, but given
an insect’s remarkable performance in discrimination, as well as generalisation of
chemicals, unveiling the principles behind insect olfaction could also be important for
chemoinformatics or classification algorithms in general [LD06, GSSG05].

Briefly, information about odorants is generated by receptor cells, each of which has a
certain receptive range, i.e. responds to several chemicals with varying strength. The
honeybee Apis mellifera has tens of thousands of receptor cells, but only 160 different
types of receptors. It is in the antennal lobe (AL), the first instance of olfactory information
processing in the insect brain, that the information from all these receptors is assembled,
forming a code word that depends on the input odorants, their relative proportion and
overall concentration.
The olfactory code is based on glomeruli, lumps of coherently acting neurites in the AL, as
basic units of information. Each of them receives input from one of the 160 receptor types
(in the honeybee; numbers vary between species). Together, they form a combinatorial
code, each input generating a characteristic pattern of glomerulus activity, i.e. code word,
which is conserved for all members of a species [GM00, GSRM99].



1 INTRODUCTION 2

In calcium-imaging experiments, a calcium-sensitive fluorescent dye is used to report
changes in intracellular calcium concentration, which is indicative of neuronal activity.
Thus, using a CCD camera to record changes in fluorescent light intensity, we are able to
monitor glomerulus activity patterns in response to defined input odorants. For details on
the experimental technique please refer to [SG02, GV04].

Any evaluation of glomerular activity patterns across individuals requires an accurate
glomerulus identification. As no rigorous method has been proposed for this task as of
today (see [SG02, GV04] for previous, manual approaches) , we present here a method
for the automatic detection and subsequent identification, i.e. labelling, of glomeruli in the
honeybee antennal lobe.

First, we need to detect glomeruli in CCD camera data, i.e. find the pixels which together
constitute a glomerulus. We therefore employ Independent Component Analysis [HO00]
to detect pixels that change coherently in front of a random background, allowing us to
compile a map of the objects observed during the experiment (section 2.1). We then de-
noise the map and apply a shape-filter based on anatomical criteria to exclude objects that
are not glomeruli (section 2.2).

The identification of the glomeruli then amounts to a registration of the glomerulus map
to the 3D reference atlas of the honeybee AL [GMM99] where glomeruli are assigned
unique labels. Previously, the identification of glomeruli has been a laborious task for
human experts, prone to variations in accuracy. A 2D view of the AL as provided by
the camera recordings has to be projected onto the 3D atlas, a task that is complicated
by experimental noise and biological variability that often leads to changes in glomerulus
position in individual bees. Moreover, several of the glomeruli present in a slice from the
atlas may not be visible in the actual data, as they do not respond to any of the tested
odorants or because they accidentally remained unstained during the experiment.

In order to identify the glomeruli, we transform both the map and the 3D atlas into
adjacency graphs with glomeruli as nodes (section 2.3). Using an exact Branch&Bound
approach for graph matching, we find the projection of the 2D map onto the 3D atlas
which comes closest to representing a subgraph isomorphism. Due to the aforementioned
biological variability, an exact isomorphism may not always exist. We account for this
variability by scoring the graphs according to a penalty matrix for deviations from the
atlas geometry.
The matching we perform is related to subgraph isomorphism, which is known to be NP-
complete [GJ90]. Thus, a complete search that takes all possible combinations of node
projections and positional variations into account will be time-consuming. In practice,
however, graphs are moderately sized and a priori knowledge is often available that helps
to efficiently speed up the search process (see section 2.3).

For evaluation, we compare our method to a ”ground truth” on a dataset manually
examined by a human expert and find that it achieves reliable results (section 3). Given
the deterministic nature of the graph-matching algorithm, we suggest that it is better suited
for an integrative analysis of multiple datasets than different manual, often undocumented,
algorithms performed by the respective experimentators.
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2 Materials and Methods

2.1 Detecting glomeruli with ICA

Independent Component Analysis (ICA) is a method for feature extraction and blind
source separation [HO00]. ICA has already found applications in neuroscience, e.g. in
the fields of EEG and MEG recording analysis, where it is used to separate the actual
signals of interest from artifacts such as muscle or eye activity [VSJ+00].
In the ICA paradigm it is assumed that a number of observers record several independent
signals, which, due to the recording situation, can occur to them as mixtures and may be
obscured by noise. While in the EEG application the focus was on the different temporal
contributions of each component, we are interested in spatial components that change their
activity coherently over time. Here, the independent signals correspond to glomeruli: each
glomerulus sends a signal, i.e. its state of activation, which is obscured by experimental
noise. Additionally, signal superposition may occur in some cases if glomeruli lie on top
of each other.
The task for the ICA is to separate signals from noise and thus to detect glomeruli.
We interpret all the pixels of the CCD camera recording as observers x(t), which, at
time instant t, perceive n signals (s1(t), . . . , sn(t)) that are transformed by vectors
(a1, . . . , an), which can, in an abstract sense, be regarded as the parameters of the
recording situation, e.g. properties of the dye, the camera etc. The number of glomeruli
may be smaller than n, as other objects can also generate signals.

x(t) =
n∑

i=1

aisi(t) = As(t) (1)

The ICA problem is to estimate the source signals and the coefficients of the so-
called mixing matrix A based on the (ideal) assumption that the signals are statistically
independent and non-gaussian. In practice, however, the strict independence requirement
may be relaxed.
In our case, pixels belonging to the same glomerulus will be considered as carrying the
same signal si(t). Two pixels from different glomeruli will display different behaviour
over time and they will be associated with two different signal components si(t) and sj(t).

While exact solutions to the ICA problem are computationally expensive, several efficient
algorithms for approximate solutions are available, e.g. the popular fastICA algorithm
[HO00]. We implemented our approach in Java, employing the open-access platform
KNIME (www.knime.org) that supports data exchange with R (www.r-project.org) . For
the ICA we could thus make use of the R-package fastICA [MHR07] that implements the
mentioned ICA algorithm.

We found that 2000 iterations of fastICA were sufficient to obtain stable, reproducible
results. We set the number of expected independent components to 50, which is greater
than the number of about 20-30 glomeruli that is commonly found in one 2D view of the
antennal lobe. This is to account for the fact that other, non-glomerulus structures are
often accidentally stained with the fluorescent dye, giving rise to artifact signals that are
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separated out by the ICA as further independent components. A subsequent filtering step
(see section 2.2) was employed to tell apart glomeruli and other objects.

Each independent component identified by the ICA resulted in an image with the
dimensions of the original video data with one glomerulus (or other object) enhanced but
not yet neatly cut out (see inlay in Figure 2b). For construction of the glomerulus map, we
thus separated signal and residual noise in each of these images by regarding only those
pixels as signal, whose values were above the upper whisker (1.5 × IQR above the 3rd
quartile) of the box-plot of all pixel values in the image. Overlaying and false-coloring
all components we then could construct a glomerulus map of the observed part of the AL
(Figure 2b).

2.2 Filtering

As previously mentioned, objects other than glomeruli can also appear in the recordings.
As this complicates the identification, we thus aimed at cleaning up the map such that only
glomeruli remain. For this step, we employed two anatomically motivated criteria, namely
object size and circularity. Glomeruli are relatively large, more or less globular objects.
In the two space dimensions of calcium-imaging recordings they appear to be roughly
circular. Non-glomerulus structures, on the other hand, result e.g. from experimental
noise, yielding smaller, scattered objects or may be parts of trachees or the antennal nerve,
which are rather elongated structures.
For the filtering we thus demanded a minimum size, i.e. a threshold tp denoting the number
of contiguous pixels. Circularity was measured by drawing a circle around the object’s
centroid. The radius was set to half the longest diameter of the object. The degree of
circularity degreec was then measured as the ratio

degreec =
# pixels (object)
# pixels (circle)

(2)

For the data analysed in this study we set the default parameters to tp = 50 pixels and the
circularity threshold tdegreec

= 0.6. For objects with more than 3 neighbours we reduced
the circularity threshold to 1

2 tdegreec
to account for the fact that in dense regions of the

recording glomeruli actually lie on top of each other, thus obscuring parts of the circular
shape.
Filtering by size also results in de-noising as a side-effect. While the circularity threshold
reflects mainly biological proportions, tp is more dependent on the resolution of the
recording and needs to be adjusted for other datasets. As there is variation between
individuals, we had to lower both thresholds (tp = 40 and tdegreec

= 0.5) for some
animals in order not to discard glomeruli. To automatise this step, one could define
thresholds relative to the average size and circularity of objects in the recording.
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2.3 Registration to the atlas with graph-matching

We transformed the previously constructed AL map into a topological graph S = (VS , ES)
with glomeruli as the set of nodes VS . Edges ES between two nodes were drawn if the
respective glomeruli touched each other. Edges were annotated with the relative position
of the glomeruli’s centroids to each other based on the angle between them on a polar grid
(see Figure 1a). We allowed 8 categories of positional information, i.e. 0◦, 45◦, ... 315◦.

The same positional annotation applied for the atlas graph G = (VG, EG) which was
based on the topological information contained in the reference atlas of the honeybee AL
[GMM99]. Taking into account that the 2D view of the AL represents not a perfect 2D
slice but rather the focal plane that may also contain glomeruli from above and below, we
accepted also glomeruli touching on the z-axis as neighbouring. For edge annotation,
however, we used the same 8 categories of 2D positional information, neglecting the
position on the z-axis.
Additionally, a systematical source of variation was taken into account: all members of
one of the rosetta-like glomerulus clusters in the atlas, were also regarded as neighbours.
Some of these glomeruli appear actually distant in the atlas, but may frequently collapse
onto each other in case this is not prevented by solid obstacles such as other glomeruli or
structural elements in the AL. These anatomical variations are discussed in [GMM99]. We
consequently chose to connect the members of these clusters by edges, but marked them
as facultative edges.

Including these rules we ensured that the set of atlas graph edges always remains a superset
of the set of map graph edges: ES ⊆ EG. Having more edges in the atlas graph than
expected based on biological knowledge, we could consider every edge from ES which
was also in EG to be consistent with the atlas topology. Conversely, every edge from ES

which was not in EG was regarded as a violation of the atlas topology.

We employed a topological score to measure for a candidate subgraph S′ the consistency
of its edge set ES′ with the atlas edge set EG. A scoring or penalty matrix (Figure 1b) was
used as a parameter for the amount of biological variation that should be allowed. Slight
deviations from the atlas topology received only slight penalties (p = 0.25), whereas gross
violations of the atlas topology, such as a mismatch ES′ 3 E′ : 0◦ , EG 3 E : 180◦

received a larger penalty (p = 1). Facultative edges were allowed but at an additional cost
of p = 0.25. The scoring matrix can be regarded as a parameter specifying the variability
of glomerulus positions in the honeybee AL. For other species, different parameter settings
may apply.

Having defined the scoring matrix, we could search for an isomorphic or close to
isomorphic projection of the map subgraph onto the atlas graph, taking a low overall score
(the sum of the individual edge scores) as indicative of a good match.
Using a depth-first Branch&Bound search strategy, we chose a seed node from the map
graph and subsequently assigned all atlas nodes to it, at each step computing all possible
assignments of children nodes of the two nodes to each other. All of these assignments
were scored and followed on iteratively if the current partial score did not exceed the
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overall minimum score for a complete projection and if no gross violation, i.e. p ≥ 1
occurred. The latter helped to identify obvious orientation mismatches at an early stage.

Using the above search strategy, we were able to efficiently enumerate all valid (with no
p ≥ 1 for any node; consistent node assignments, e.g. no atlas graph node assigned
twice) projections. In practice, we kept all valid projections in a search tree and scored all
possible paths through the tree, starting at the root, identifying the least scoring path as the
desired best approximation to an isomorphism.
The approach described above works without any additional information. However, in
order to reduce the number of isomorphic solutions we made use of a priori knowledge in
the form of a marker glomerulus. Chemical substances such as nonanol can be employed
as markers as they elicit a characteristic response, activating one glomerulus - the marker
glomerulus - far more than the others in the observed region of the AL. In these cases, we
thus knew the correct projection of one of the nodes a priori. Hence, we could introduce
a constraint to better tell apart solutions with similar scores. Additionally, this provides an
excellent seed for the above graph matching approach.

Figure 1: a) Topological coding: The edge between the black and the white node is annotated with
180◦ (←). b) Penalty (scoring) matrix defining the penalty for mismatches between edge annotation
in the atlas graph and the map subgraph. If an edge exists in the map (e.g. ↑ ), but not in the atlas
(/∈), this results in a high penalty of p = 1. Slight positional variabilities are given lower penalties.
As we assume ES ⊆ EG, atlas edges are allowed to be missing in the map (p = 0, see first row).

2.4 Dataset used in this study

The dataset used for the evaluation of our method was taken from [Dit05]. Bee preparation
and staining with the calcium-sensitive fluorescent dye fura-dextran were performed as
described in [SG02]. Monochromatic light was used for the excitation of the dye. For each
odorant measured, two times 40 images (two sequential, quasi-simultaneous images for
340 nm and 380 nm) were taken at a frequency of 5 Hz and a spatial resolution of 2×2 µm
per pixel using a TillPhotonics CCD camera and an Olympus BX50WI microscope fitted
with a 20× objective lens (TillPhotonics, Germany; Olympus, Germany).
The images contained in the evaluation dataset were constructed using the pixel-wise ratio
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of the 340 nm and 380 nm images. The resolution of the images was 160× 120 pixels. 16
aliphatic hydrocarbons at 4 different concentrations (10−1 to 10−4 dilution in mineral oil)
were used as odorants. The odorants were presented to the bees from image 11 to 15 of
the 40 images recorded.
For glomerulus detection, we concatenated all 40-image recordings that were done in the
same animal in order to see as many glomeruli active as possible. Depending on the
number of odorant responses measured, this amounted to between 600 and 1200 images
per animal. Manual detection and identification of glomeruli was performed as described
in [Dit05] using the honeybee AL reference atlas and one marker glomerulus.

Figure 2: ICA is performed on camera recordings (animal 12) (a) to obtain a map of the AL (b). The
inlay in b) shows one of the independent components that were used to construct the map. Through
filtering, non-glomerulus objects are discarded. A graph-matching approach identifies the glomeruli,
resulting in a labelled AL map (c). For comparison, a human expert labelling is shown (d).
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Figure 3: Performance for 20 different animals. The bars represent the ratio c
g

, where c is the number
of glomeruli which received a common label in both the manual and the computed solution, while g
stands for the total number of glomeruli.

3 Results

We produced labelled AL maps for a dataset consisting of 20 different animals. An
example showing the individual processing steps of our method is given in Figure 2.
Reproducibility of the maps was generally high. For each animal, 10 runs of the ICA
and subsequent filtering were performed to generate 10 maps per animal. The average
pairwise pixel overlap between the maps from the same animal was 94%. Deformations
of individual glomeruli occurred, the overall map layout, however, was always the same.

To assess the quality of our glomerulus identification, we evaluated the overlap of the
computed and the hand-made labelling. The hand-made labellings [Dit05] provided
us with coordinates of glomerulus centroids as the human expert saw them (no shape
information was recorded). We placed the centroids onto the corresponding maps (see
Figure 2d) and counted all matches, i.e. positions where both our computed maps and
the hand-made labelling agreed on having detected a glomerulus. We defined this as the
number of glomeruli g that were visible in the respective AL. Cases like glomeruli 43/121
and 135 which exist only in one of the maps (Figure 2c/d) did not influence g.

In order to evaluate the performance of our method we computed the ratio c
g , where c is

the number of glomerulus labels both maps had in common. Thus, two labellings perfectly
in accordance with each other resulted in a ratio of 1.
On average, we achieved a ratio of 0.79 with 5 labellings being 100 percent correct (see
Figure 3). A typical example is shown in Figure 2c, where 14 glomeruli were detected by
both the computational and the manual approach. Here, 12 glomeruli received the same
label, resulting in a ratio of 0.86. In this example, the source of disagreement between
manual and computed solution is the different perception of glomerulus 35 (computed)
which was identified as two glomeruli (23 and 29) by the manual approach.

Typically, minor disagreements on the identity of a single glomerulus occured in the outer
regions of the maps, where glomeruli have less neighbours and thus less geometrical
constraints, giving rise to multiple solutions of equal or similar probability. When ratios
were below 0.6, this was the result of follow-on mistakes: if a glomerulus more towards
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the middle of the map received a wrong label, adjacent glomeruli were consequently
shifted compared to the manual solution, which explains the relatively high number of
disagreements in those cases (marked with * in Figure 3). These solutions received,
however, slightly better scores than the correct solution. Post-hoc human identification
clarified that in all of these cases the computed solution was also compliant with the
reference atlas. In order to resolve this, one would need a new marker, i.e. another
constraint in a different region of the AL to further reduce the number of similarly scoring
projections.

Computing time for the graph matching differed depending on the number of glomeruli
visible in a particular 2D view of the AL (minimum 5, maximum 20, median 12) and the
uniqueness of the correct solution. In case of many equally well scoring projections, all
of them had to be followed deep into the search tree, preventing an early bound. On a 4
CPU machine (4× Intel R© Xeon R© 2.33 GHz), computing time for the data described in
this work was in a range between below one second up to about 13 minutes. The ICA took
on average 3-4 minutes on a desktop computer.

4 Conclusion

We have proposed an image analysis method for the detection and identification of
glomeruli in the honeybee AL. The average accuracy of its results lies well in the range
of human performance, however in some cases the best score according to the given
scoring matrix did not correspond to the projection chosen by the human expert. These
results leave room for future optimisations of the parameters, i.e. the connectivity of the
atlas graph and the scoring matrix. Both reflect biological properties, i.e. anatomy and
anatomical variability and could be learned from training data.
Further, we accepted the manual glomerulus identification as a ground truth for evaluation
purposes. Although the manual identification was performed very carefully, errors may
nevertheless have occurred. The manual identification is usually very reliable close to the
marker glomerulus (17 or 33 in this dataset), however accuracy decreases with increasing
distance from the fixed point indicated by the marker.
In order to improve the quality of glomerulus identification, both manual and
computational, it may thus be necessary to use multiple marker glomeruli to cover the
relevant parts of the AL.

Computation time is generally unproblematic, however it could become an issue for
real-time application of the method while the experiment is running and for datasets
where more glomeruli are visible. Future improvements could also involve extensive
preprocessing of the atlas graph, making use of the fact that it does not change between
the experiments. This would allow for polynomial time subgraph matching against the
preprocessed atlas graph, however at the cost of increasing space requirements [MB99].

In summary, we have devised a method that allows to deterministically identify glomeruli
in calcium-imaging recordings of the honeybee AL. By employing a penalty matrix for
deviations from the atlas geometry we have introduced a rigorous definition of a good
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registration fit to replace hand-made glomerulus labellings. Our graph-matching approach
allows to automatically search for the optimal solution based on the score criterion.

With the image analysis pipeline at hand it now becomes possible to screen multiple
datasets with the same accuracy. Glomerular activation patterns from different studies
can be combined to build a data pool that will subsequently be used as a resource for data
mining approaches aimed at understanding information processing in insect brains.
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