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Abstract—Calcium-imaging enables us to record movies of
brain activity from the antennal lobe, a region of the honeybee
brain responsible for processing odor information. Here, we
present a matrix factorisation framework to automatically
detect the neural units in this region and to accurately estimate
their signals. Based on a non-negative mixture model, the
algorithmic approach is to construct a convex cone that
contains the data. The generating vectors of the cone are the
purest, least mixed timeseries from the movie and serve as
basis vectors for the matrix factorisation. We show that vectors
selected in this way correspond to the biological signals and
evaluate the method on both artificial and biological data.
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I. INTRODUCTION

Olfaction, the sense of smell, is a formidable task for
a sensory processing system that needs to map the highly
multidimensional world of chemical properties to a neural
code representing odor identity [12]. The olfactory code
is based on neural units called glomeruli. In our model
organism, the honeybee Apis mellifera, a particular odor
elicits a characteristic activation pattern in the 160 glomeruli
of a brain region called the antennal lobe (AL) [8].

These activation patterns can be observed by in vivo
optical imaging using calcium-sensitive fluorescent dyes (see
e.g. [6] [5] [13]). Here, we employ a ratiometric dye (Fura2-
dextran) where the signal is the ratio of light emitted after
excitation at wavelengths 340nm and 380nm.

The datasets are movies of brain activity over time (Figure
1a) recorded with a CCD camera through a confocal micro-
scope. The experimental protocol (Figure 1b) is a concate-
nation of measurements during periods of odor presentation
and periods of idleness. Glomeruli respond differentially to a
given odor and they also have individual background activity
in the idle state. Glomerulus-specific response properties are
the basis for detecting glomeruli by observing correlations
between pixel-timeseries from the movie [4].

Biological questions concern e.g. changes in the odor
response after the odor has been learned through association
with a reward [13], or reverberations of odor response
patterns during the idle state as a form of short-term memory
for odors [6]. Such effects can be subtle and thus signal
processing needs to accurately detect glomerulus positions
and to estimate their true signals from noisy measurements.

Figure 1. a) Frontal view onto a model of the honeybee AL (modified from
[2]) and schematic for a calcium-imaging movie covering a part of the view
(varies depending on focal depth). The circled glomeruli (labelled as 17 and
33 after [7]) exhibit differential responses to the odor stimulation during the
interval marked with a black bar. b) Experimental protocol underlying the
movie: periods without any stimulation (idle-state activity) alternate with
periods of odor stimulation.

Traditionally, signal processing in this field has been
performed in a semi-automatic fashion, using laboratory-
specific scripts to apply spatial filters and to visualise
correlations between pixel-timeseries. Signals are estimated
by averaging over pixel-timeseries within a radius around the
manually selected glomerulus centroid [4] [5]. This approach
may fail to detect all glomeruli, it is not optimal with respect
to estimating the true glomerulus signals, and it does not
allow for automated processing, e.g. in real-time systems.

Here, we propose an algorithm for automated signal ex-
traction from imaging movies. We introduce a non-negative
mixture model, such that glomerular signals occur either as
pure, unmixed signals (plus noise), or as additive mixtures
of source signals in regions of contact between glomeruli.

Adapting a concept known from the remote sensing
literature [10] [9], we propose a convex cone fitting approach
where the generating vectors of a convex cone containing
the data are sought to serve as basis vectors in a matrix fac-
torisation framework (Section II). They identify the purest,
least mixed timeseries in the movie. On both artificial and
real biological data we show that these vectors lead us to
the glomerular signals and how they can be used for movie
denoising with the matrix factorisation (Section III).
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II. A CONVEX CONE FITTING ALGORITHM

A. Matrix factorisation framework for imaging movies

We consider a movie matrix A with m timepoints and n
pixels. In this work, n = 160 × 120, m ≈ 4000, where m
could be larger depending on the experimental protocol.

Our goal is to provide an interpretable rank-k approxima-
tion to A. For signal estimation and denoising, we would
like to factorise A into a matrix T whose k columns are
timeseries, and a matrix S whose k rows are images, where
the images should be sparse and the timeseries should
correspond to the glomerular signals.

Am×n : Ak = Tm×k Sk×n =

k∑
r=1

TIr SrJ (1)

We denote as Aij the element at the intersection of the
ith row and the jth column. AIj is the jth column of A and
corresponds to a pixel, or more precisely, a pixel-timeseries
vector of length m. For ease of notation, we also refer to
the rows of S as s(r) and the columns of T as t(r).

B. Preprocessing with PCA

We zscore-normalised the n pixel-timeseries, i.e. we
subtracted the mean of each pixel-timeseries and divided
by the standard deviation. As a first approach to (1) and
as a general preprocessing we then performed Principal
Component Analysis (PCA) [11] on the movie A.

PCA provides optimal dimensionality reduction to a
rank-k matrix with respect to common error measures.
For glomerulus detection, it is relevant that PCA opti-
mally preserves the covariation (between timeseries), i.e.∥∥PT

k Pk −ATA
∥∥
Fr

is minimal for a given k, assuming that
Pk contains the top-k principal components ([11], chap. 3.2).

Cast into the matrix factorisation framework (1), the
k principal component images are in matrix S and the
corresponding loadings per timepoint in matrix T (or vice
versa). In Figure 2, we give examples for the images in S.

PCA is a beneficial preprocessing for imaging movies.
Subsequent algorithms can be carried out efficiently on
a small matrix, and glomerular signals are concentrated
in the top principal components (see Figure 2). Transient
signals will inevitably contribute to the variance, and the
principal component is the variance-maximising projection
[11]. I.e., variance is accumulated in the top components and
by discarding components with lower eigenvalues (and no
signal) we can improve the signal-to-noise ratio.

If only the top-k principal components are sought, PCA
can be computed with a computational complexity of
O(mnk) [18], which is in the same order of complexity as
the convex cone fitting (Algorithm 1). I.e, the main aspect for
this work is noise reduction by PCA. Note that, if necessary,
fast approximate PCA by pixel importance sampling [17]
can substantially reduce n and thus also the computational
load for our method (PCA + Algorithm 1).

Figure 2. Principal component images (rows of S) of the movie from
Figure 1 ranked by eigenvalue in decreasing order. Components 1-2 contain
background, 3 - ca. 30: mixtures of background and glomeruli (black and
white circles). Components with lower eigenvalue contain less structure.
The color scale ranges from white (negative) to black (positive values).

C. Convex cone fitting

The principal components are useful in a technical sense,
but they do not separate individual glomeruli (Figure 2),
which motivates an alternative approach to (1).

Recall that we measure light. Neither can light intensity
be negative, nor is it reasonable in an anatomical sense to
speak of negative glomeruli in S. We thus assume that non-
negative combinations (coefficients in S0+) of the basis-
pixel-timeseries in T can explain the movie A up to the
residual noise in N .

A = TS0+ +N (2)

A pixel-timeseries contains the additive mixture of one
or more glomerular signals plus noise. Mixtures can occur
in case of light scatter (from neighbour glomeruli) at the
fringes, but usually not in the middle of a glomerulus.

Regarding (2), we leverage on a concept from convex
analysis: The columns of T generate a convex cone pointed
at the origin, and this cone contains parts of A. We call a
set of vectors V a convex cone, if α1v1 + α2v2 ∈ V for
non-negative α1, α2, and any v1, v2 ∈ V .
The extreme vectors of a convex cone (on the boundary of
the hull) are by definition those that cannot be expressed as
conic (non-negative) combinations of the other vectors in the
cone. Given the set of extreme vectors of the cone, we can
reconstruct all others by conic combination of the extreme
vectors. Different generators exist, but the set of extreme
vectors is the minimal generator for the cone. [14] [3]

Our goal is now to choose T such that the convex cone
generated by it contains (almost) all columns of A, and we
do so by selecting extreme vectors from A into T .

By definition, the extreme vectors cannot be expressed
by conic combination, i.e. they are not mixtures with non-
negative coefficients, but pure signal sources. Given the
model in (2) and the assumption that pure, unmixed pixel-
timeseries exist (neglecting N), these pure timeseries are the
extreme vectors of A (cp. [1] [10]).
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Our approach to finding these extreme vectors is a greedy
column selection strategy that corresponds to fitting a con-
vex cone to the data: Algorithm 1. We sequentially select
r = 0, . . . , c− 1 pixel-timeseries t(r) into matrix T , at each
step selecting the column that is least explained by conic
combinations of the previous basis vectors. S contains the
corresponding non-negative spatial mappings.

The residual matrix is formed by subtracting the ”conic
contribution” t(r)s0+(r) of the selected column vector t(r),
where the row vector s(r) = AT t(r), and s0+(r) is derived
from s(r) by setting negative entries to zero. Subtracting the
conic contribution removes what can be explained by t(r)
with non-negative coefficients.

The maximum column norm in the residual matrix identi-
fies the column that is least explained by the cone, and it is
the locally optimal choice for the next extreme vector, as an
extreme vector cannot be expressed by conic combination.

A natural, yet computationally expensive, initialisation is
the column with the maximum conic contribution (in terms
of
∥∥t s0+

∥∥). In practice, we estimated an extreme column
by finding the largest distance from a random start column.

For illustration, we apply Algorithm 1 to the movie from
Figure 1a. Generally, we set c ≥ # visible glomeruli ≈ 30
(see model in Figure 1a). In Figure 3a, we show the top-
10 rows of matrix S. We can obtain a compact summary
of all c components in S by forming the induced clustering
in Figure 3b: each pixel is assigned to the component for
which it has the highest coefficient.

Glomeruli form clusters, while inbetween the signal is
discretised to the strongest contribution. Unlike the principal
components, the timeseries in T can be interpreted as a
particular glomerulus signal (cp. Figures 2 and 3a).

Computational complexity of Algorithm 1 is dominated
by forming the m×n residual matrix c times. After dimen-
sionality reduction with PCA, Algorithm 1 took between
three and four seconds per bee (c = 40, Intel R© 2140 CPU,
1.6 GHz). The computational load of the entire method thus
depends mainly on PCA (see Section II-B).

D. Postprocessing to remove N
We perform Algorithm 1 in PCA space, where column

selection is more robust against noise and outliers. Full-
length pixel-timeseries can be extracted from A at the
positions indicated by Algorithm 1. These timeseries are
not mixed with the other sources, but still affected by the
noise N (2). N is then averaged out in postprocessing.
We could, for example, average over neighbouring pixel-
timeseries within a 3 × 3 square around the selected one
(spatial average). Instead, we employ a ”temporal average”,
i.e. we average over those pixel-timeseries that are most
similar to the selected one, the estimate for the purest signal.
Given the selected t(r), we average over all pixel-timeseries
from A that are more similar to t(r) than to any of the other
timeseries in T , giving rise to the average vector t̂

(r)
.

Algorithm 1 [T, S] = Cone_fitting (A(m×n), c)
for all r ∈ [0, c− 1] do

if (r == 0) then
initialisation of p: see main text

end if

t(r) = A
{r}
Ip ; s(r) = A{r}T t(r)

s0+(r) = negative_to_zero(s(r))

TIr = t(r); SrJ = s0+(r)

A{r+1} = A{r} − t(r) s0+(r) //form residual matrix

p = argmaxp

∣∣∣A{r+1}
Ip

∣∣∣ //index of next column

end for

Figure 3. Applying Algorithm 1 to an imaging movie. a) Top-10 rows
(images) of matrix S. b) Clustering of the image plane induced by S.
Positions of the selected pixel-timeseries in T are marked with grey spots.
c) Clustering of the image plane induced by Ŝ (after temporal averaging).
d) Example for two timeseries t(r) (spatial average) and e) t̂(r) (temporal
average) on a short subsequence of the movie including an odor presentation
(interval marked by black bar).
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This procedure is analogous to thresholding the images
in S to cancel out small coefficients. For visualisation, we
compute the corresponding ŝ(r): For each component ŝ(r)
we set all coefficients to zero which are not involved in the
average t̂

(r)
. Then, the induced clustering (Figure 3c) leads

to clearly separated glomeruli. Each pure signal estimate is
based on the pixels of one color. The mixed signal pixels
between the glomeruli are set to white as all coefficients are
zero, i.e. the signal is not close enough to any of the sources.

We show examples for t(r) (Figure 3d, spatial average),
and the corresponding t̂

(r)
(Figure 3e, temporal average).

The temporally averaged t̂
(r)

are smoother, as they are
averaged over a larger number of pixel-timeseries. It appears
that averaging over the maximum number of pixels, with-
out including mixed pixels, is more readily achieved with
temporal averaging, which we use throughout this work.

E. Related work
Practical data analysis in this field still involves manual

steps (Section I). Two algorithmical approaches have been
explored: Stetter et al. [15] reconstructed honeybee imaging
data by bottom-up fitting of nonlinear model functions.
Strauch&Galizia [16] applied Independent Component Anal-
ysis (ICA) to decompose imaging movies. The bottom-up
approach does, however, not separate glomeruli, and ICA
requires non-Gaussianity of the signals (which is hard to
prove for glomeruli) and does not consider non-negativity.

The convex analysis approach has previously found ap-
plication on hyperspectral data in remote sensing [1]. In
this field, Gruninger et al. [9] and Ifarraguerri&Chang [10]
proposed convex cone algorithms related to our method. In
contrast to these approaches, we do not primarily aim at
unmixing signal contributions to a pixel value. In fact, we
discard mixed-signal pixels, and we use the convex cone to
find the purest signals which are then postprocessed.
Assuming a mixture model is what distinguishes our method
from discrete clustering techniques such as k-means.

III. EVALUATION

A. Artificial data
We tested our method on data constructed by additive

mixing of realistic source signals (µ = 0, σ = 1, shifted to
be non-negative) as in (2). The ”odors” dataset consists of a
series of odor responses (Figure 4a), and the ”idle” dataset
consists of spontaneous background activity (Figure 4b).

We constructed imaging movies by assigning source sig-
nals to spatially smooth and partially overlapping glomeruli
(Figure 4c). Additionally, we applied Gaussian noise with
variable standard deviation σ.

We employed a correlation score as a measure for source
recovery. Let t̂

(i)
be a signal estimate, and let u(j) be a

source timeseries. Based on the Pearson correlation coeffi-
cient ρ(x, y) between two timeseries, we define the correla-
tion score: corr = 1

n

∑n
i=1 argmaxj ρ( t̂

(i)
,u(j) ).

In Figure 4d, we show correlation scores for various noise
levels (k = 16). On both datasets, correlation scores were
high for σ ≤ 1, but exhibited a decline at σ = 1− 1.3.

The clusterings in Figure 4e show that the implanted sig-
nals were detected, while mixed-signal pixels were excluded
from the clusters (as for the biological data in Figure 3c).

Attempting to improve noise tolerance, we smoothened
images from the movie by convolution with a Gaussian
kernel (width=7). This allowed successful signal recovery
even at a high noise level (σ = 2, Figures 4df). The filter
attenuates the noise N , such that more pixel-timeseries are
similar to the purest signal and can contribute to the average.

With additional Gaussian filtering, clusterings appear
smoother, but the filtering is not necessarily required for the
typical noise level in the movies (compare: without filtering
in Figure 3c; with filtering: Figure 5a:Bee1).

B. Biological data
To demonstrate practical applicability, we performed our

method (including the Gaussian filtering) on movies of
honeybee brain activity (protocol as in Figure 1b).

In Figure 5a, we show clusterings for three different
bees that clearly reveal glomerulus positions. While brain
anatomy is subject to individual variation, and experimental
parameters determine the subset of visible glomeruli, we can
still register landmark glomeruli from the clusterings onto
the anatomical reference AL [7].

Using the rank-c approximation Ac = T̂ Ŝ to the original
movie A (c = 50), we give an impression of inter-trial and
inter-animal variability: Figures 5b and 5c show repeated
responses to the odor nonanol in Bee1. Figures 5d and 5e
show nonanol responses in Bee2.
Besides brain anatomy, also odor response patterns in the
AL, a plastic neural circuit that can be shaped by experience
throughout lifetime, are subject to variation. Nevertheless,
spatial patterns, as well as timeseries shape are largely
conserved within and between bees [8] (Figures 5b-e).

An important feature of our method is movie denoising.
Due to the sparseness of Ŝ, that contains predominantly
glomeruli, the rank-c approximations in Figures 5b-e are
clearly noise-reduced with respect to unprocessed or ”tradi-
tionally treated” movies (cp. Figures 1a, 5f).

IV. CONCLUSIONS

Analysis of imaging movies from the insect AL is still
largely based on semi-automatic methods that require human
interaction to detect glomeruli (e.g. in [6] [5] [13]).

Here, we have presented a method for automatic glomeru-
lus detection, signal estimation and movie denoising. In the
future, it will serve as the basis for automated real-time
processing of imaging data, e.g. to provide visual orientation
for the experimenter. Accurate signal estimation by finding
the purest pixel-timeseries with the convex cone approach
will be helpful for analysing subtle effects or faint signals
in background activity.
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Figure 4. Artificial data with 16 sources (based on real data; for each: µ = 0, σ = 1). a) Correlation matrix and first source signal for the odors dataset.
b) Correlation matrix and first source signal for the idle dataset c) above: Spatial arrangement of source signals. Pure signals are in grey, mixed signals in
black. White areas contain no signal. below: With Gaussian noise (σ = 1) added. d) Results of Algorithm 1 (plus temporal averaging). Correlation scores
for various noise levels/additional spatial filtering. e) Clusterings for low and medium noise levels. f) Clustering for the highest noise level.
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Figure 5. a) Clusterings of the image plane for three bees. Anatomical landmarks highlighted by lines. Left and right ALs (corresponding to the left
and right antenna) are mirror-symmetric and contain the same types of glomeruli. Glomeruli are labelled according to the anatomical reference AL. b)-e)
left: Low-rank reconstructions Ac = T̂ Ŝ of the original movie A. We show excerpts (timepoints 30 to 37 out of a 110 timepoints odor block) from two
movies: Bee1 and Bee2, each false-color coded (same color scale for all images from one bee). Both bees received the odor nonanol twice with a pause of
several minutes inbetween. The black box marks the onset of odor stimulation. Timeseries in T were normalised by subtracting the mean activity before
odor onset, i.e. we see relative changes in calcium level. right: Timeseries for three glomeruli (17, 29, 33) with characteristical temporal dynamics in
response to the odor nonanol. b) Bee 1, first nonanol measurement c) Bee1, second nonanol measurement, d) Bee2, first nonanol measurement e) Bee2,
second nonanol measurement f) For comparison, frames 34 to 37 from e) as in ”traditional” data processing: Normalisation to the interval before odor
onset plus Gaussian spatial filtering. 6


